Permutations¶
Time: O(NxN!); Space: O(N); medium
Given a collection of distinct integers, return all possible permutations.
Example 1:
Input: nums = [1,2,3]
Output:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
1. Recurson¶
[4]:
class Solution1(object):
"""
Time: O(N*N!)
Space: O(N)
"""
def permute(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
result = []
used = [False] * len(nums)
self.permuteRecu(result, used, [], nums)
return result
def permuteRecu(self, result, used, cur, nums):
if len(cur) == len(nums):
result.append(cur[:])
return
for i in range(len(nums)):
if not used[i]:
used[i] = True
cur.append(nums[i])
self.permuteRecu(result, used, cur, nums)
cur.pop()
used[i] = False
[5]:
s = Solution1()
nums = [1,2,3]
assert s.permute(nums) == [
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
2. Recursion + DFS¶
[6]:
class Solution2(object):
def permute(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
res = []
self.dfs(nums, [], res)
return res
def dfs(self, nums, path, res):
if not nums:
res.append(path)
for i in range(len(nums)):
# e.g., [1, 2, 3]: 3! = 6 cases
# idx -> nums, path
# 0 -> [2, 3], [1] -> 0: [3], [1, 2] -> [], [1, 2, 3]
# -> 1: [2], [1, 3] -> [], [1, 3, 2]
#
# 1 -> [1, 3], [2] -> 0: [3], [2, 1] -> [], [2, 1, 3]
# -> 1: [1], [2, 3] -> [], [2, 3, 1]
#
# 2 -> [1, 2], [3] -> 0: [2], [3, 1] -> [], [3, 1, 2]
# -> 1: [1], [3, 2] -> [], [3, 2, 1]
self.dfs(nums[:i] + nums[i+1:], path + [nums[i]], res)
[7]:
s = Solution2()
nums = [1,2,3]
assert s.permute(nums) == [
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]